Music, Cards, and Game Shows!

Alex Roth, Grace Luft-Morgan, Ethan van Heerden, Emily Wang

Your Presenters

Alex:

- Grew up near DC
- Has played guitar for ten years
- Is planning to talk about the math in music!

Emily:

- From Northern NJ
- Plays tennis and dances
- Is planning to talk about the 21 Card Trick:)

Grace:

- Grew up in Westchester, NY
- Soccer and Horseback Riding
- Will discuss 27 and 8 Card Tricks

Ethan:

- From Northern NH
- Enjoys sports
- Has forklift licence
- Will talk about the

Monty Hall problem

Math In Music

- Sound on a guitar is produced by plucking a stretched string, causing it to shoot back and forth quickly (oscillate)
- That make a soundwave with a certain frequency, which affects the pitch
- The string also vibrates in halves, thirds, fourths, fifths, etc, creating extra tones at octaves above
 the original, that persist even when the original stops - Overtones
- Everything in the universe has a resonant frequency, just like a guitar string
- Beatles Lost Chord - An extra note in a recording made it impossible for guitar players to replicate the chord, and no one knew why.

Instructions!

- Cards are dealt face-up into 3 columns of 7 cards each
- Player chooses one card and indicates its column
- Pick up the cards and deal them into 3 columns of 7 again
- Ask player which column the card is in
- Repeat this process once more
- Gather the cards and find the player's card

How to do the Trick

- When picking up the columns, place the column with the player's card in the middle of the three columns
- Repeat the process two more times
- The player's card should be the 11th card from the top
- Can have variations when you place the column on the bottom or the top the last time and count the cards from there

How Does the Trick Work?

- The 21 card trick utilizes a process that "puts" the selected card in the middle of the deck and keeps it there using a pseudo-fixed point, which is the 11th card
- A similar trick can be devised for any odd number where the selected card is put in the middle

Instructions!

- Tell the player to pick a card in their head
- Deal the cards face up into three piles of 9
- dealing left to right until each pile has 9 cards
- Ask the player to point to the pile that contains their card
- Place this pile on the bottom of the other two piles
- Deal the cards into 3 piles once again
- This time placing the pile pointed to by the player on top of the other two piles
- Deal the cards into 3 piles for a final time
- Place the pile pointed to by the player in the middle of the other two piles
- Your card will be revealed in space 12 of the deck

How Does the Trick Work?

GOAL: the players card to be in space 12
Ternary - using combinations of base 3 to represent a number

$$
\begin{gathered}
12-1=11=\left(1 \times 3^{2}\right)+\left(0 \times 3^{1}\right)+\left(2 \times 3^{0}\right) \\
(1 \times 9)+(0 \times 3)+(2 \times 1) \\
(9)+(0)+(2) \\
11
\end{gathered}
$$

"Coefficient Code"

0 : place the pile on the top

1: place the pile in the middle
2: place the pile on the bottom
$12-1=11=\left(\mathbf{1} \times 3^{2}\right)+\left(\mathbf{0} \times 3^{1}\right)+\left(\mathbf{2} \times 3^{0}\right)$

RESULT: the players card to be in space 12

Instructions!

- Tell the player to pick a card in their head
- Deal the cards face up into two piles of 4
- dealing left to right until each pile has 4 cards
- Ask the player to point to the pile that contains their card
- Place this pile on the bottom of the other pile
- Deal the cards into 2 piles once again
- This time placing the pile pointed to by the player on top of the other pile
- Deal the cards into 2 piles for a final time
- Place the pile pointed to by the player on the bottom of the other pile
- Your card will be revealed in space 6 of the deck

How Does the Trick Work?

GOAL; the players card to be in space 6
Binary - using combinations of base 2 to represent a number

$$
\begin{aligned}
& 6-1=5=\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right) \\
&(1 \times 4)+(0 \times 2)+(1 \times 1) \\
&(4)+(0)+(1)
\end{aligned}
$$

5
"Coefficient Code"

0 : place the pile on the top

 1: place the pile in the bottom$$
6-1=5=\left(\mathbf{1} \times 2^{2}\right)+\left(\mathbf{0} \times 2^{1}\right)+\left(\mathbf{1} \times 2^{0}\right)
$$

bottom

top

bottom

RESULT: the players card to be in space 6

The Monty Hall Problem

Ethan van Heerden

Background

- Comes from 1960s game show
- Let's Make a Deal
- Hosted by Monty Hall
- There are 3 doors:

Should you switch doors?

Let's Play!

https://www.mathwarehouse.com/monty-hall-simulation-online/

Yes! You always should.

- A common misconception is that removing one of the doors with a goat makes the two doors equally likely to have the car. So it wouldn't matter if you switched.
- But in reality it does matter!

Conclusion, you should switch!

- By switching, we will double our chances of picking the door with the car. This can be difficult to understand, but here is the proof:
- https://www.mathwarehouse.com/monty-hall-simulation-online/
- What if we had 100 doors?

100 doors should help convince you

- You pick the first door. Chances are you most likely picked the wrong one.
- By picking the first door, there was a 99\% chance the other doors had the car. So there is a 99% you'll win the car if you switch!

Still Don't Believe Me?
 Mathematical Proof with Bayes' Theorem

Bayes' Theorem is used to calculate the probability that an event occurs given additional information:

Bayes' Theorem

$$
\begin{gathered}
\text { H: Hypothesis E: Observation } \\
P(H \mid E)=\frac{P(E \mid H) * P(H)}{P(E)}
\end{gathered}
$$

Say you pick door A and the host opens door C. We want to find the probability the car is behind door B:
$P($ Car behind $B \mid$ Host opens $C)=\frac{P(\text { Host opens } C \mid \text { Car behind } B) * P(\text { Car behind } B)}{P(\text { Host opens } C)}$
$P($ Car behind $B \mid$ Host opens $C)=\frac{1 * \frac{1}{3}}{\frac{1}{2}}$

$$
P(\text { Car behind } B \mid \text { Host opens } C)=\frac{2}{3}
$$

Thank you everyone! Any Questions... about anything?

